
Combinatorics in Banach space theory (MIM UW 2014/15)
PROBLEMS (Part 1)

PROBLEM 1.1. Give an example of a coloring [N]∞ → {−1, 1} which is both Lebesgue
and Baire measurable, when regarding [N]∞ as a subset of the Cantor set {0, 1}N, but
is not constant on any set of the form [M ]∞, for any infinite M ⊂ N.

PROBLEM 1.2. Show that every completely Ramsey set V ⊂ [N]∞ has the Baire property
with respect to the Ellentuck topology.
Hint. This may be proved, e.g., by showing that V \ intV is nowhere dense.

PROBLEM 1.3. Show that every set V ⊂ [N]∞ that is meager in the Ellentuck topology
must be nowhere dense. In fact, show that for every basic open set [a,A] there exists
B ∈ [a,A] such that [a,B] ∩ V = ∅. (Recall the notation

[a,A] = {C ∈ P∞N : a ⊂ C ⊆ a ∪ A, a < C \ a}

for a ∈ [N]<∞ and A ∈ [N]∞.)
Remark. This is the key observation in order to prove that every subset of [N]∞ with the Baire
property with respect to the Ellentuck topology is completely Ramsey, knowing already that all
Ellentuck-open sets are completely Ramsey.

PROBLEM 1.4. The Schreier space S is the completion of (c00, ‖·‖) under the norm given
by

‖x‖ = sup
{∑
n∈E
|xn| : E ⊂ N and |E| 6 minE

}
.

Verify that the spreading model of the canonical basis of S is isomorphic to `1.

PROBLEM 1.5. Let (xn)∞n=1 be a spreading basic sequence in a Banach space, that is, for
any integers 0 < p1 < . . . < pn and any scalars (aj)nj=1 we have∥∥∥∥∥∥

n∑
j=1

ajxpj

∥∥∥∥∥∥ =

∥∥∥∥∥∥
n∑
j=1

ajxj

∥∥∥∥∥∥ .
Show that the basic sequence (x2n − x2n+1)∞n=1 is 1-unconditional.
Hint. It is enough to prove that the vectors yn := x2n−x2n+1 satisfy ‖∑i∈I aiyi‖ 6 ‖

∑
j∈J ajyj‖

for every pair of finite sets of natural numbers I ⊆ J (why?).

PROBLEM 1.6. Let (xn)∞n=1 be a non-constant, weakly null, spreading sequence. Show
that it is an unconditional basic sequence with the suppression constant Ks = 1; note
that Ks is defined as the supremum of norms of projections PA corresponding to all
subsets A ⊂ N (for x =

∑∞
n=1 anxn, PAx =

∑
n∈A anxn).

Hint. It is enough to show that for every finite sequence of scalars (aj)kj=1 and each j0 ∈
{1, . . . , k} we have ‖∑j 6=j0 ajxj‖ 6 ‖

∑
j ajxj‖ (why?).

Remark. In general, the suppression and unconditional constants (Ks and Ku, respectively)
satisfy 1 6 Ks 6 Ku 6 2Ks, hence every non-constant, weakly null, spreading sequence forms
an unconditional basic sequence.
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PROBLEM 1.7. Prove one of several James’ criterions of (non-)reflexivity: If X is a non-
reflexive Banach space, then for every θ ∈ (0, 1) there exist sequences (xn) ⊂ BX and
(x∗n) ⊂ BX∗ such that x∗nxj = θ for all n 6 j and x∗nxj = 0 for all n > j.
Hint. Use Helly’s theorem which says that given any functionals x∗1, . . . , x

∗
n ∈ X∗ and scalars

α1, . . . , αn, the following assertions are equivalent:

(i) there exists x ∈ X such that x∗jx = αj for 1 6 j 6 n;

(ii) there is a constant γ such that
∣∣∣∑n

j=1 αjβj
∣∣∣ 6 γ

∥∥∥∑n
j=1 βjx

∗
j

∥∥∥ for all scalars β1, . . . , βn.

Moreover, if (ii) holds true, then for every ε > 0 the vector x ∈ X in assertion (i) may be
chosen so that ‖x‖ 6 γ + ε.

PROBLEM 1.8. Prove that the unit ball of any non-reflexive, infinite-dimensional Banach
space contains an infinite sequence (xn)∞n=1 such that

‖xm − xn‖ > 5
√

4 for all m 6= n.

Hint. Apply the James criterion of non-reflexivity given in Problem 1.7 and combine it with the
Brunel–Sucheston theorem. Consider four types of combinations whose coefficients are given by:

• a
(1)
1 = 1, a(1)2 = −1;

• for i = 2, 3, 4: a(i)j = (−1)i if 1 6 j < i or j = 2i, and a(i)j = (−1)i+1 if i 6 j < 2i.

Remark. This gives a concrete estimate for the Elton–Odell theorem in the non-reflexive case.
It was proved by A. Kryczka and S. Prus (2000).

PROBLEM 1.9. Prove the following statement called root lemma or ∆-system lemma: If
A is an uncountable family of finite sets, then there exists an uncountable subfamily B
of A and a finite (possibly empty) set S such that A ∩ B = S for all A,B ∈ B with
A 6= B.
Hint. With no loss generality we may assume that |A| = ℵ1 and all members of A are fi-
nite subsets of the ordinal interval [0, ω1]. Show that for some n ∈ N the collection An :=
{A ∈ A : |A| = n} is uncountable and sup(

⋃
A∈An A) = ω1. For each A ∈ An write

A = {A(1), . . . , A(n)} with A(1) < . . . < A(n) and define p ∈ {1, . . . , n} to be the le-
ast integer satisfying sup{A(p) : A ∈ An} = ω1.

PROBLEM 1.10. Let (xα)α∈A be any sequence in the unit ball of c0(ω1) satisfying

‖xα − xβ‖ > 1 + ε for all α, β ∈ A, α 6= β,

where ε is some fixed positive number. Show that A must be countable.
Hint. Apply the root lemma (cf. Problem 1.9).
Remark. This shows that the uncountable version of the Elton–Odell theorem fails to hold true
in general for non-separable Banach spaces.

PROBLEM 1.11. Prove James’ c0-distortion theorem: Let X be a Banach space conta-
ining an isomorphic copy of c0, and let (xn)∞n=1 ⊂ X be a normalized basic sequence
equivalent to the canonical basis of c0. Then, for every δ > 0 there exists a normalized
block basic sequence (yn)∞n=1 of (xn)∞n=1 such that

(1− δ) sup
16j6n

|aj| 6

∥∥∥∥∥∥
n∑
j=1

ajyj

∥∥∥∥∥∥6 sup
16j6n

|aj|
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for any sequence of scalars (aj)nj=1.
Remark. This statement is completely analogous to James’ `1-distortion theorem. The fact that
nothing similar can be said for `p-spaces with 1 < p < ∞ (in other words, that they are all
arbitrarily distortable) is extremely difficult to prove; it was done by Odell and Schlumprecht
(1994). The first known example of an arbitrarily distortable space was the Schlumprecht space
(1991).

PROBLEM 1.12. Let (xn)∞n=1 be any sequence in a Banach space X and let K be any
positive constant. Show that the set

BK :=

M = (mk)∞k=1 ∈ [N]∞ : sup
n

∥∥∥∥∥∥
n∑
j=1

xmj

∥∥∥∥∥∥ 6 K

 ,
where (mk)∞k=1 stands for the increasing enumeration of M , is closed in the product
topology (regarding [N]∞ as a subset of the Cantor space {0, 1}N).

PROBLEM 1.13. Let (xn)∞n=1 be a bimonotone basic sequence in a Banach space X, that
is, for any convergent series of the form

∑
n=1 anxn, and any k ∈ N we have∥∥∥∥∥

k∑
n=1

anxn

∥∥∥∥∥ ,
∥∥∥∥∥∥
∞∑

n=k+1

anxn

∥∥∥∥∥∥ 6
∥∥∥∥∥
∞∑
n=1

anxn

∥∥∥∥∥ .
For any K > 0 define BK ⊂ [N]∞ as in Problem 1.12. Suppose that a set M ∈ [N]∞

satisfies [M ]∞ ⊆ ⋃K>0 BK . Prove that for some M ′ ∈ [M ]∞ and K > 0 we have [M ′]∞ ⊆
BK .
Hint. Use the fact that every pointwise closed set in [N]∞ is completely Ramsey. Of course, you
should also refer to the assertion of Problem 1.12.

PROBLEM 1.14. Let (xn)∞n=1 be a weakly null sequence in a Banach space X and (x∗m)∞m=1
be a bounded sequence in X∗. Show that for every ε > 0 there is an n0 ∈ N such that
|x∗mxn0| < ε for infinitely many m’s.
Hint. Try first to prove something different. Namely, that for every weakly null sequence (yn)∞n=1
and every δ > 0 there exists a finite sequence (λj)kj=1 of positive numbers summing up to 1
such that

max


∥∥∥∥∥∥
k∑
j=1

εjλjyj

∥∥∥∥∥∥ : |εj| = 1 for 1 6 j 6 k

 < δ.
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