Combinatorics in Banach space theory (MIM UW 2014/15)

PROBLEMS (Part 1)

PROBLEM 1.1. Give an example of a coloring $[\mathbb{N}]^{\infty} \to \{-1, 1\}$ which is both Lebesgue and Baire measurable, when regarding $[\mathbb{N}]^{\infty}$ as a subset of the Cantor set $\{0, 1\}^{\mathbb{N}}$, but is not constant on any set of the form $[M]^{\infty}$, for any infinite $M \subset \mathbb{N}$.

PROBLEM 1.2. Show that every completely Ramsey set $\mathcal{V} \subset [\mathbb{N}]^{\infty}$ has the Baire property with respect to the Ellentuck topology.

Hint. This may be proved, e.g., by showing that $\mathcal{V} \setminus \operatorname{int} \mathcal{V}$ is nowhere dense.

PROBLEM 1.3. Show that every set $\mathcal{V} \subset [\mathbb{N}]^{\infty}$ that is meager in the Ellentuck topology must be nowhere dense. In fact, show that for every basic open set [a, A] there exists $B \in [a, A]$ such that $[a, B] \cap \mathcal{V} = \emptyset$. (Recall the notation

$$[a, A] = \{ C \in \mathcal{P}_{\infty} \mathbb{N} \colon a \subset C \subseteq a \cup A, \ a < C \setminus a \}$$

for $a \in [\mathbb{N}]^{<\infty}$ and $A \in [\mathbb{N}]^{\infty}$.)

Remark. This is the key observation in order to prove that every subset of $[\mathbb{N}]^{\infty}$ with the Baire property with respect to the Ellentuck topology is completely Ramsey, knowing already that all Ellentuck-open sets are completely Ramsey.

PROBLEM 1.4. The Schreier space S is the completion of $(c_{00}, \|\cdot\|)$ under the norm given by

$$||x|| = \sup\left\{\sum_{n \in E} |x_n| \colon E \subset \mathbb{N} \text{ and } |E| \leq \min E\right\}.$$

Verify that the spreading model of the canonical basis of S is isomorphic to ℓ_1 .

PROBLEM 1.5. Let $(x_n)_{n=1}^{\infty}$ be a *spreading* basic sequence in a Banach space, that is, for any integers $0 < p_1 < \ldots < p_n$ and any scalars $(a_j)_{j=1}^n$ we have

$$\left\|\sum_{j=1}^n a_j x_{p_j}\right\| = \left\|\sum_{j=1}^n a_j x_j\right\|.$$

Show that the basic sequence $(x_{2n} - x_{2n+1})_{n=1}^{\infty}$ is 1-unconditional.

Hint. It is enough to prove that the vectors $y_n := x_{2n} - x_{2n+1}$ satisfy $\|\sum_{i \in I} a_i y_i\| \leq \|\sum_{j \in J} a_j y_j\|$ for every pair of finite sets of natural numbers $I \subseteq J$ (why?).

PROBLEM 1.6. Let $(x_n)_{n=1}^{\infty}$ be a non-constant, weakly null, spreading sequence. Show that it is an unconditional basic sequence with the *suppression constant* $K_s = 1$; note that K_s is defined as the supremum of norms of projections P_A corresponding to all subsets $A \subset \mathbb{N}$ (for $x = \sum_{n=1}^{\infty} a_n x_n$, $P_A x = \sum_{n \in A} a_n x_n$).

Hint. It is enough to show that for every finite sequence of scalars $(a_j)_{j=1}^k$ and each $j_0 \in \{1, \ldots, k\}$ we have $\|\sum_{j \neq j_0} a_j x_j\| \leq \|\sum_j a_j x_j\|$ (why?).

Remark. In general, the suppression and unconditional constants (K_s and K_u , respectively) satisfy $1 \leq K_s \leq K_u \leq 2K_s$, hence every non-constant, weakly null, spreading sequence forms an unconditional basic sequence.

PROBLEM 1.7. Prove one of several James' criterions of (non-)reflexivity: If X is a nonreflexive Banach space, then for every $\theta \in (0,1)$ there exist sequences $(x_n) \subset B_X$ and $(x_n^*) \subset B_{X^*}$ such that $x_n^* x_j = \theta$ for all $n \leq j$ and $x_n^* x_j = 0$ for all n > j.

Hint. Use Helly's theorem which says that given any functionals $x_1^*, \ldots, x_n^* \in X^*$ and scalars $\alpha_1, \ldots, \alpha_n$, the following assertions are equivalent:

- (i) there exists $x \in X$ such that $x_j^* x = \alpha_j$ for $1 \leq j \leq n$;
- (ii) there is a constant γ such that $\left|\sum_{j=1}^{n} \alpha_{j} \beta_{j}\right| \leq \gamma \left\|\sum_{j=1}^{n} \beta_{j} x_{j}^{*}\right\|$ for all scalars $\beta_{1}, \ldots, \beta_{n}$.

Moreover, if (ii) holds true, then for every $\varepsilon > 0$ the vector $x \in X$ in assertion (i) may be chosen so that $||x|| \leq \gamma + \varepsilon$.

PROBLEM 1.8. Prove that the unit ball of any non-reflexive, infinite-dimensional Banach space contains an infinite sequence $(x_n)_{n=1}^{\infty}$ such that

$$||x_m - x_n|| \ge \sqrt[5]{4}$$
 for all $m \ne n$.

Hint. Apply the James criterion of non-reflexivity given in Problem 1.7 and combine it with the Brunel–Sucheston theorem. Consider four types of combinations whose coefficients are given by:

- $a_1^{(1)} = 1, a_2^{(1)} = -1;$ for i = 2, 3, 4: $a_j^{(i)} = (-1)^i$ if $1 \le j < i$ or j = 2i, and $a_j^{(i)} = (-1)^{i+1}$ if $i \le j < 2i$.

Remark. This gives a concrete estimate for the Elton–Odell theorem in the non-reflexive case. It was proved by A. Kryczka and S. Prus (2000).

PROBLEM 1.9. Prove the following statement called *root lemma* or Δ -system lemma: If \mathcal{A} is an uncountable family of finite sets, then there exists an uncountable subfamily \mathcal{B} of \mathcal{A} and a finite (possibly empty) set S such that $A \cap B = S$ for all $A, B \in \mathcal{B}$ with $A \neq B$.

Hint. With no loss generality we may assume that $|\mathcal{A}| = \aleph_1$ and all members of \mathcal{A} are finite subsets of the ordinal interval $[0, \omega_1]$. Show that for some $n \in \mathbb{N}$ the collection $\mathcal{A}_n :=$ $\{A \in \mathcal{A} : |A| = n\}$ is uncountable and $\sup(\bigcup_{A \in \mathcal{A}_n} A) = \omega_1$. For each $A \in \mathcal{A}_n$ write $A = \{A(1), \ldots, A(n)\}$ with $A(1) < \ldots < A(n)$ and define $p \in \{1, \ldots, n\}$ to be the least integer satisfying $\sup\{A(p): A \in \mathcal{A}_n\} = \omega_1$.

PROBLEM 1.10. Let $(x_{\alpha})_{\alpha \in A}$ be any sequence in the unit ball of $c_0(\omega_1)$ satisfying

 $||x_{\alpha} - x_{\beta}|| \ge 1 + \varepsilon$ for all $\alpha, \beta \in A, \ \alpha \neq \beta$,

where ε is some fixed positive number. Show that A must be countable.

Hint. Apply the root lemma (cf. Problem 1.9).

Remark. This shows that the uncountable version of the Elton–Odell theorem fails to hold true in general for non-separable Banach spaces.

PROBLEM 1.11. Prove James' c_0 -distortion theorem: Let X be a Banach space containing an isomorphic copy of c_0 , and let $(x_n)_{n=1}^{\infty} \subset X$ be a normalized basic sequence equivalent to the canonical basis of c_0 . Then, for every $\delta > 0$ there exists a normalized block basic sequence $(y_n)_{n=1}^{\infty}$ of $(x_n)_{n=1}^{\infty}$ such that

$$(1-\delta)\sup_{1\leqslant j\leqslant n}|a_j|\leqslant \left\|\sum_{j=1}^n a_j y_j\right\|\leqslant \sup_{1\leqslant j\leqslant n}|a_j|$$

for any sequence of scalars $(a_j)_{j=1}^n$.

Remark. This statement is completely analogous to James' ℓ_1 -distortion theorem. The fact that nothing similar can be said for ℓ_p -spaces with 1 (in other words, that they are all*arbitrarily distortable*) is extremely difficult to prove; it was done by Odell and Schlumprecht (1994). The first known example of an arbitrarily distortable space was the Schlumprecht space (1991).

PROBLEM 1.12. Let $(x_n)_{n=1}^{\infty}$ be any sequence in a Banach space X and let K be any positive constant. Show that the set

$$\mathcal{B}_K := \left\{ M = (m_k)_{k=1}^\infty \in [\mathbb{N}]^\infty \colon \sup_n \left\| \sum_{j=1}^n x_{m_j} \right\| \leqslant K \right\},\$$

where $(m_k)_{k=1}^{\infty}$ stands for the increasing enumeration of M, is closed in the product topology (regarding $[\mathbb{N}]^{\infty}$ as a subset of the Cantor space $\{0, 1\}^{\mathbb{N}}$).

PROBLEM 1.13. Let $(x_n)_{n=1}^{\infty}$ be a bimonotone basic sequence in a Banach space X, that is, for any convergent series of the form $\sum_{n=1}^{\infty} a_n x_n$, and any $k \in \mathbb{N}$ we have

$$\left\|\sum_{n=1}^{k} a_n x_n\right\|, \quad \left\|\sum_{n=k+1}^{\infty} a_n x_n\right\| \leq \left\|\sum_{n=1}^{\infty} a_n x_n\right\|.$$

For any K > 0 define $\mathcal{B}_K \subset [\mathbb{N}]^\infty$ as in Problem 1.12. Suppose that a set $M \in [\mathbb{N}]^\infty$ satisfies $[M]^\infty \subseteq \bigcup_{K>0} \mathcal{B}_K$. Prove that for some $M' \in [M]^\infty$ and K > 0 we have $[M']^\infty \subseteq \mathcal{B}_K$.

Hint. Use the fact that every pointwise closed set in $[\mathbb{N}]^{\infty}$ is completely Ramsey. Of course, you should also refer to the assertion of Problem 1.12.

PROBLEM 1.14. Let $(x_n)_{n=1}^{\infty}$ be a weakly null sequence in a Banach space X and $(x_m^*)_{m=1}^{\infty}$ be a bounded sequence in X^* . Show that for every $\varepsilon > 0$ there is an $n_0 \in \mathbb{N}$ such that $|x_m^* x_{n_0}| < \varepsilon$ for infinitely many *m*'s.

Hint. Try first to prove something different. Namely, that for every weakly null sequence $(y_n)_{n=1}^{\infty}$ and every $\delta > 0$ there exists a finite sequence $(\lambda_j)_{j=1}^k$ of positive numbers summing up to 1 such that

$$\max\left\{ \left\| \sum_{j=1}^{k} \varepsilon_{j} \lambda_{j} y_{j} \right\| : |\varepsilon_{j}| = 1 \text{ for } 1 \leq j \leq k \right\} < \delta.$$