Combinatorics in Banach space theory (MIM UW 2014/15)
 PROBLEMS (Part 1)

PROBLEM 1.1. Give an example of a coloring $[\mathbb{N}]^{\infty} \rightarrow\{-1,1\}$ which is both Lebesgue and Baire measurable, when regarding $[\mathbb{N}]^{\infty}$ as a subset of the Cantor set $\{0,1\}^{\mathbb{N}}$, but is not constant on any set of the form $[M]^{\infty}$, for any infinite $M \subset \mathbb{N}$.

PROBLEM 1.2. Show that every completely Ramsey set $\mathcal{V} \subset[\mathbb{N}]^{\infty}$ has the Baire property with respect to the Ellentuck topology.
Hint. This may be proved, e.g., by showing that $\mathcal{V} \backslash \operatorname{int} \mathcal{V}$ is nowhere dense.
PROBLEM 1.3. Show that every set $\mathcal{V} \subset[\mathbb{N}]^{\infty}$ that is meager in the Ellentuck topology must be nowhere dense. In fact, show that for every basic open set $[a, A]$ there exists $B \in[a, A]$ such that $[a, B] \cap \mathcal{V}=\varnothing$. (Recall the notation

$$
[a, A]=\left\{C \in \mathcal{P}_{\infty} \mathbb{N}: a \subset C \subseteq a \cup A, a<C \backslash a\right\}
$$

for $a \in[\mathbb{N}]^{<\infty}$ and $A \in[\mathbb{N}]^{\infty}$.)
Remark. This is the key observation in order to prove that every subset of $[\mathbb{N}]^{\infty}$ with the Baire property with respect to the Ellentuck topology is completely Ramsey, knowing already that all Ellentuck-open sets are completely Ramsey.

PROBLEM 1.4. The Schreier space \mathcal{S} is the completion of $\left(c_{00},\|\cdot\|\right)$ under the norm given by

$$
\|x\|=\sup \left\{\sum_{n \in E}\left|x_{n}\right|: E \subset \mathbb{N} \text { and }|E| \leqslant \min E\right\} .
$$

Verify that the spreading model of the canonical basis of \mathcal{S} is isomorphic to ℓ_{1}.
PROBLEM 1.5. Let $\left(x_{n}\right)_{n=1}^{\infty}$ be a spreading basic sequence in a Banach space, that is, for any integers $0<p_{1}<\ldots<p_{n}$ and any scalars $\left(a_{j}\right)_{j=1}^{n}$ we have

$$
\left\|\sum_{j=1}^{n} a_{j} x_{p_{j}}\right\|=\left\|\sum_{j=1}^{n} a_{j} x_{j}\right\| .
$$

Show that the basic sequence $\left(x_{2 n}-x_{2 n+1}\right)_{n=1}^{\infty}$ is 1-unconditional.
Hint. It is enough to prove that the vectors $y_{n}:=x_{2 n}-x_{2 n+1}$ satisfy $\left\|\sum_{i \in I} a_{i} y_{i}\right\| \leqslant\left\|\sum_{j \in J} a_{j} y_{j}\right\|$ for every pair of finite sets of natural numbers $I \subseteq J$ (why?).

PROBLEM 1.6. Let $\left(x_{n}\right)_{n=1}^{\infty}$ be a non-constant, weakly null, spreading sequence. Show that it is an unconditional basic sequence with the suppression constant $K_{s}=1$; note that K_{s} is defined as the supremum of norms of projections P_{A} corresponding to all subsets $A \subset \mathbb{N}\left(\right.$ for $\left.x=\sum_{n=1}^{\infty} a_{n} x_{n}, P_{A} x=\sum_{n \in A} a_{n} x_{n}\right)$.
Hint. It is enough to show that for every finite sequence of scalars $\left(a_{j}\right)_{j=1}^{k}$ and each $j_{0} \in$ $\{1, \ldots, k\}$ we have $\left\|\sum_{j \neq j_{0}} a_{j} x_{j}\right\| \leqslant\left\|\sum_{j} a_{j} x_{j}\right\|$ (why?).
Remark. In general, the suppression and unconditional constants (K_{s} and K_{u}, respectively) satisfy $1 \leqslant K_{s} \leqslant K_{u} \leqslant 2 K_{s}$, hence every non-constant, weakly null, spreading sequence forms an unconditional basic sequence.

PROBLEM 1.7. Prove one of several James' criterions of (non-)reflexivity: If X is a nonreflexive Banach space, then for every $\theta \in(0,1)$ there exist sequences $\left(x_{n}\right) \subset B_{X}$ and $\left(x_{n}^{*}\right) \subset B_{X^{*}}$ such that $x_{n}^{*} x_{j}=\theta$ for all $n \leqslant j$ and $x_{n}^{*} x_{j}=0$ for all $n>j$.
Hint. Use Helly's theorem which says that given any functionals $x_{1}^{*}, \ldots, x_{n}^{*} \in X^{*}$ and scalars $\alpha_{1}, \ldots, \alpha_{n}$, the following assertions are equivalent:
(i) there exists $x \in X$ such that $x_{j}^{*} x=\alpha_{j}$ for $1 \leqslant j \leqslant n$;
(ii) there is a constant γ such that $\left|\sum_{j=1}^{n} \alpha_{j} \beta_{j}\right| \leqslant \gamma\left\|\sum_{j=1}^{n} \beta_{j} x_{j}^{*}\right\|$ for all scalars $\beta_{1}, \ldots, \beta_{n}$.

Moreover, if (ii) holds true, then for every $\varepsilon>0$ the vector $x \in X$ in assertion (i) may be chosen so that $\|x\| \leqslant \gamma+\varepsilon$.

PROBLEM 1.8. Prove that the unit ball of any non-reflexive, infinite-dimensional Banach space contains an infinite sequence $\left(x_{n}\right)_{n=1}^{\infty}$ such that

$$
\left\|x_{m}-x_{n}\right\| \geqslant \sqrt[5]{4} \quad \text { for all } m \neq n
$$

Hint. Apply the James criterion of non-reflexivity given in Problem 1.7 and combine it with the Brunel-Sucheston theorem. Consider four types of combinations whose coefficients are given by:

- $a_{1}^{(1)}=1, a_{2}^{(1)}=-1$;
- for $i=2,3,4: a_{j}^{(i)}=(-1)^{i}$ if $1 \leqslant j<i$ or $j=2 i$, and $a_{j}^{(i)}=(-1)^{i+1}$ if $i \leqslant j<2 i$.

Remark. This gives a concrete estimate for the Elton-Odell theorem in the non-reflexive case. It was proved by A. Kryczka and S. Prus (2000).

PROBLEM 1.9. Prove the following statement called root lemma or Δ-system lemma: If \mathcal{A} is an uncountable family of finite sets, then there exists an uncountable subfamily \mathcal{B} of \mathcal{A} and a finite (possibly empty) set S such that $A \cap B=S$ for all $A, B \in \mathcal{B}$ with $A \neq B$.
Hint. With no loss generality we may assume that $|\mathcal{A}|=\aleph_{1}$ and all members of \mathcal{A} are finite subsets of the ordinal interval $\left[0, \omega_{1}\right]$. Show that for some $n \in \mathbb{N}$ the collection $\mathcal{A}_{n}:=$ $\{A \in \mathcal{A}:|A|=n\}$ is uncountable and $\sup \left(\cup_{A \in \mathcal{A}_{n}} A\right)=\omega_{1}$. For each $A \in \mathcal{A}_{n}$ write $A=\{A(1), \ldots, A(n)\}$ with $A(1)<\ldots<A(n)$ and define $p \in\{1, \ldots, n\}$ to be the least integer satisfying $\sup \left\{A(p): A \in \mathcal{A}_{n}\right\}=\omega_{1}$.

PROBLEM 1.10. Let $\left(x_{\alpha}\right)_{\alpha \in A}$ be any sequence in the unit ball of $c_{0}\left(\omega_{1}\right)$ satisfying

$$
\left\|x_{\alpha}-x_{\beta}\right\| \geqslant 1+\varepsilon \quad \text { for all } \alpha, \beta \in A, \alpha \neq \beta
$$

where ε is some fixed positive number. Show that A must be countable.
Hint. Apply the root lemma (cf. Problem 1.9).
Remark. This shows that the uncountable version of the Elton-Odell theorem fails to hold true in general for non-separable Banach spaces.

PROBLEM 1.11. Prove James' c_{0}-distortion theorem: Let X be a Banach space containing an isomorphic copy of c_{0}, and let $\left(x_{n}\right)_{n=1}^{\infty} \subset X$ be a normalized basic sequence equivalent to the canonical basis of c_{0}. Then, for every $\delta>0$ there exists a normalized block basic sequence $\left(y_{n}\right)_{n=1}^{\infty}$ of $\left(x_{n}\right)_{n=1}^{\infty}$ such that

$$
(1-\delta) \sup _{1 \leqslant j \leqslant n}\left|a_{j}\right| \leqslant\left\|\sum_{j=1}^{n} a_{j} y_{j}\right\| \leqslant \sup _{1 \leqslant j \leqslant n}\left|a_{j}\right|
$$

for any sequence of scalars $\left(a_{j}\right)_{j=1}^{n}$.
Remark. This statement is completely analogous to James' ℓ_{1}-distortion theorem. The fact that nothing similar can be said for ℓ_{p}-spaces with $1<p<\infty$ (in other words, that they are all arbitrarily distortable) is extremely difficult to prove; it was done by Odell and Schlumprecht (1994). The first known example of an arbitrarily distortable space was the Schlumprecht space (1991).

PROBLEM 1.12. Let $\left(x_{n}\right)_{n=1}^{\infty}$ be any sequence in a Banach space X and let K be any positive constant. Show that the set

$$
\mathcal{B}_{K}:=\left\{M=\left(m_{k}\right)_{k=1}^{\infty} \in[\mathbb{N}]^{\infty}: \sup _{n}\left\|\sum_{j=1}^{n} x_{m_{j}}\right\| \leqslant K\right\}
$$

where $\left(m_{k}\right)_{k=1}^{\infty}$ stands for the increasing enumeration of M, is closed in the product topology (regarding $[\mathbb{N}]^{\infty}$ as a subset of the Cantor space $\{0,1\}^{\mathbb{N}}$).

PROBLEM 1.13. Let $\left(x_{n}\right)_{n=1}^{\infty}$ be a bimonotone basic sequence in a Banach space X, that is, for any convergent series of the form $\sum_{n=1} a_{n} x_{n}$, and any $k \in \mathbb{N}$ we have

$$
\left\|\sum_{n=1}^{k} a_{n} x_{n}\right\|,\left\|\sum_{n=k+1}^{\infty} a_{n} x_{n}\right\| \leqslant\left\|\sum_{n=1}^{\infty} a_{n} x_{n}\right\| .
$$

For any $K>0$ define $\mathcal{B}_{K} \subset[\mathbb{N}]^{\infty}$ as in Problem 1.12. Suppose that a set $M \in[\mathbb{N}]^{\infty}$ satisfies $[M]^{\infty} \subseteq \bigcup_{K>0} \mathcal{B}_{K}$. Prove that for some $M^{\prime} \in[M]^{\infty}$ and $K>0$ we have $\left[M^{\prime}\right]^{\infty} \subseteq$ \mathcal{B}_{K}.
Hint. Use the fact that every pointwise closed set in $[\mathbb{N}]^{\infty}$ is completely Ramsey. Of course, you should also refer to the assertion of Problem 1.12.

PROBLEM 1.14. Let $\left(x_{n}\right)_{n=1}^{\infty}$ be a weakly null sequence in a Banach space X and $\left(x_{m}^{*}\right)_{m=1}^{\infty}$ be a bounded sequence in X^{*}. Show that for every $\varepsilon>0$ there is an $n_{0} \in \mathbb{N}$ such that $\left|x_{m}^{*} x_{n_{0}}\right|<\varepsilon$ for infinitely many m 's.
Hint. Try first to prove something different. Namely, that for every weakly null sequence $\left(y_{n}\right)_{n=1}^{\infty}$ and every $\delta>0$ there exists a finite sequence $\left(\lambda_{j}\right)_{j=1}^{k}$ of positive numbers summing up to 1 such that

$$
\max \left\{\left\|\sum_{j=1}^{k} \varepsilon_{j} \lambda_{j} y_{j}\right\|:\left|\varepsilon_{j}\right|=1 \text { for } 1 \leqslant j \leqslant k\right\}<\delta
$$

